Rank error-correcting pairs
نویسندگان
چکیده
Error-correcting pairs were introduced independently by Pellikaan and Kötter as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise product, some of which preserve symbolic products of linearized polynomials after evaluation and some of which coincide with usual products of matrices. Then we define rank error-correcting pairs for codes that are linear over the extension field and for codes that are linear over the base field, and relate both types. Bounds on the minimum rank distance of codes and MRD conditions are given. Finally we show that some well-known families of rank-metric codes admit rank error-correcting pairs, and show that the given algorithm generalizes the classical algorithm using error-correcting pairs for the Hamming metric.
منابع مشابه
GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملError-correcting codes on low rank surfaces
In this paper we construct some algebraic geometric error-correcting codes on surfaces whose Neron-Severi group has low rank. If the rank of the Neron-Severi group is 1, the intersection of this surface with an irreducible surface of lower degree will be an irreducible curve, and this makes possible the construction of codes with good parameters. Rank 1 surfaces are not easy to find, but we are...
متن کاملError-Correcting Factorization
Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi-class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without...
متن کاملProperties of codes in rank metric
We study properties of rank metric and codes in rank metric over finite fields. We show that perfect codes do not exist. We derive an equivalent of the Varshamov-Gilbert bound in Hamming metric. We study the asymptotic behavior of the minimum rank distance of codes that are on GV. We show that the packing density of maximum rank distance codes is lower bounded by a function depending on the err...
متن کاملThe partial order of perfect codes associated to a perfect code
It is clarified whether or not “full rank perfect 1-error correcting binary codes act like primes in the family of all perfect 1-error correcting binary codes”. Thereby the well known connection between perfect 1-error correcting binary codes and tilings will be discussed and used.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 84 شماره
صفحات -
تاریخ انتشار 2017